Modified logarithmic Sobolev inequalities on R F . Barthe and
نویسنده
چکیده
We provide a sufficient condition for a measure on the real line to satisfy a modified logarithmic Sobolev inequality, thus extending the criterion of Bobkov and Götze. Under mild assumptions the condition is also necessary. Concentration inequalities are derived. This completes the picture given in recent contributions by Gentil, Guillin and Miclo.
منابع مشابه
Modified logarithmic Sobolev inequalities in null curvature
We present a logarithmic Sobolev inequality adapted to a log-concave measure. Assume that Φ is a symmetric convex function on R satisfying (1 + ε)Φ(x) 6 xΦ(x) 6 (2 − ε)Φ(x) for x > 0 large enough and with ε ∈]0, 1/2]. We prove that the probability measure on R μΦ(dx) = e /ZΦdx satisfies a modified and adapted logarithmic Sobolev inequality : there exist three constant A,B,D > 0 such that for al...
متن کاملLogarithmic Sobolev Trace Inequality
A logarithmic Sobolev trace inequality is derived. Bounds on the best constant for this inequality from above and below are investigated using the sharp Sobolev inequality and the sharp logarithmic Sobolev inequality. Logarithmic Sobolev inequalities capture the spirit of classical Sobolev inequalities with the logarithm function replacing powers, and they can be considered as limiting cases of...
متن کاملLogarithmic Harnack inequalities∗
Logarithmic Sobolev inequalities first arose in the analysis of elliptic differential operators in infinite dimensions. Many developments and applications can be found in several survey papers [1, 9, 12]. Recently, Diaconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for Markov chains. The lower bounds for log-Sobolev constants can be used to improve convergence bounds for ...
متن کاملModified Logarithmic Sobolev Inequalities in Discrete Settings
Motivated by the rate at which the entropy of an ergodic Markov chain relative to its stationary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap) inequality. We sho...
متن کاملAn Inequality for Relative Entropy and Logarithmic Sobolev Inequalities in Euclidean Spaces
for any density function p(x) on R, where pi(·|y1, . . . , yi−1, yi+1, . . . , yn) and Qi(·|x1, . . . , xi−1, xi+1, . . . , xn) denote the local specifications of p resp. q, and ρi is the logarithmic Sobolev constant of Qi(·|x1, . . . , xi−1, xi+1, . . . , xn). Thereby we derive a logarithmic Sobolev inequality for a weighted Gibbs sampler governed by the local specifications of q. Moreover, th...
متن کامل